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Abstract 

A method is developed to include solvation effects in linear-scaling semiempirical quantum calculations. Favorable 
scaling of computational effort for large molecules is achieved using a preconditioned conjugate gradient technique in 
conjunction with a linear-scaling recursive bisection method for evaluation of electrostatic interactions. The method requires 
approximately 30% computational overhead relative to gas-phase calculations. Effective atomic radii for biological 
macromolecules are derived from fitting to experimental and theoretical solvation energies for small molecules homologous 
to amino- and nucleic acid residues. 

1. Introduction 

Recent advances in computational resources and 
theoretical developments have greatly extended the 
realm of molecular problems accessible to quantum 
mechanical investigation. For the first time, macro- 
molecular systems can begin to be studied with 
electronic structure methods. The field, however, is 
in its infancy, and faced with a host of new chal- 
lenges. Many of the well-established methods for 
small molecules cannot be utilized in the limit of 
very large number of particles because of computa- 
tional scaling barriers. In this letter we describe the 
parameterization and implementation of a solvation 

* Corresponding author. 

model [1] within a linear-scaling electronic structure 
theory framework [2] that allows biological macro- 
molecules to be studied with semiempirical quantum 
mechanical methods [3]. 

2. Methodology 

In conventional electronic structure methods, in- 
cluding semiempirical molecular orbital methods, the 
variational parameter is the single-particle density 
matrix defined by 

P i j  = ~ f ~ . n , ~ c * m C j ,  ~ , (1) 
m 

where n,. and {Cm} are the molecular orbital occupa- 
tion numbers and basis set expansion coefficients. 
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The expansion coefficients are obtained as eigenvec- 
tors of the Hartree-Fock equation 

F . C = S . C . ~ ,  (2) 

where F and S are the usual Fock and overlap 
matrices, respectively. Direct solution of Eq. (2) via 
matrix diagonalization or constrained minimization 
procedures lead to algorithms that require computa- 
tional effort proportional to (at least) the cubic of the 
number of particles. This ~'(N 3) scaling behavior 
ultimately limits the size of systems that can be 
handled by conventional quantum mechanical meth- 
ods. Several 'linear-scaling' electronic structure 
methods have been recently proposed that overcome 
the t~(N 3) bottleneck (for example, see [2] and and 
references therein). Here we employ a 'divide-and- 
conquer' approach [4,5] toward the quantum mechan- 
ical treatment of biological macromolecules in solu- 
tion [3]. 

For linear combination of atomic orbitals (LCAO) 
or other localized basis-set methods, the Fock, over- 
lap, and density matrices are inherently sparse. It is 
in the exploitation of the nature of this sparsity 
pattern in conjunction with partitioning methods that 
allow the divide-and-conquer method to overcome 
the O(N 3) diagonalization procedure while achiev- 
ing very high accuracy [2,5]. The first step is to 
divide the molecule into localized (nonoverlapping) 
groups of atoms termed subsystems. A localized set 
of (overlapping) weight functions for each subsystem 
are then introduced to partition the electron density 
[4] or density matrix [2,5]. For Hartree-Fock meth- 
ods, it is convenient to use a Mulliken-type partition 
for the density matrix. We define the symmetric 
weight matrix P,~ for each subsystem a by 

Pi~ = 1 V i , j ~ a ,  

P i j - - 2  V i ~ a j ~ a ,  

Pi~ = 0 o t h e r w i s e .  (3) 

Note the weight functions satisfy the condition 
E a  Pi~" = 1 V i, j .  The density matrix in the region of 
the subsystem can be approximated to high accuracy 
by a projection of the Fock matrix in a basis set 
localized in the neighborhood of that subsystem. The 
nature of the wavefunctions that extend beyond the 

boundary of the subsystem necessitate the use of a 
buffer region, in which basis functions on atoms are 
included in the projection. The approximate density 
matrix is expressed as 

Pij E Pi~Pij  = E P a ~-~ n ~ C"* ~ ~" ij ~.~ m--ira Cjm ( 4 a )  
c~ c~ in 

and 

n ;  ={1 + exp[( e ~ -  t z ) / kT]}  -l  , (4b) 

where Pi~ is the locally projected density matrix in 
the •th subsystem, n,~, e~, and {C~} are the corre- 
sponding occupation numbers, eigenvalues, and 
eigenvectors, respectively, k is the Boltzmann con- 
stant, and T is the absolute temperature. The occupa- 
tion numbers are taken to be Fermi functions ( T =  
298 K) with chemical potential /x chosen so that 
normalization of the electron density is maintained. 
The procedure proceeds iteratively as in conven- 
tional methods until self-consistency is achieved. 

For a realistic quantum mechanical representation 
of biological macromolecules, inclusion of solvent 
effects are crucial. There is a rich literature on the 
incorporation of the solvent reaction field into quan- 
tum mechanical calculations [6-10]. A recently pro- 
posed solvent model that has several advantages for 
quantum mechanical methods is the conductor-like 
screening model (COSMO) [1]. The method has 
proven useful for modeling solvent effects of high 
dielectric media for small molecules [11-14]. The 
method is based on a variational principle for the 
electrostatic energy of a charge distribution con- 
tained in a cavity surrounded by a conductor (8 = ~): 

Ee I I y qT I Y =~q . A . q +  . B . Q + - ~ Q  . C - Q ,  (5) 

where the vectors q and Q represent the reaction 
field surface charge distribution, and the solute charge 
density, respectively, and the matrices A, B, and C 
describe electrostatic interactions between the vec- 
tors. The surface charge distribution q is determined 
by the condition that the total electrostatic energy is 
minimized, aEe~/a q = 0, which leads to the linear 
equation 

A - q = - B . Q .  (6) 
The conventional approach is to solve explicitly 

for q through inversion of the matrix A [1]. This 
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leads to a convenient solution of the Green's func- 
tion for the problem 

= -~Q . G . Q ,  Ee I 1 T ( 7 a )  

G = C -  B v.  A-~  • B .  (7b) 

For finite dielectric, the surface charges are scaled by 
a factor f ( ~ ) = ( ~ -  1 ) / ( 8 +  6) [1], where 6 is a 
number between 0 and 2 which we take here to be 0 
in accord with the Gauss theorem. The use of Eq. 
(7b) is convenient for self-consistent field (SCF) 
calculations of small molecules where the inverse 
can be computed once at the beginning of the itera- 
tive procedure and stored. Subsequent iterations re- 
quire only matrix multiplications. Unfortunately, for 
large molecules, this approach is not possible. This 
results from the fact that the computational effort of 
the matrix inversion is de(M 3) and storage require- 
ment is de(m2) ,  where M is the dimensionality of 
the surface charge vector q. For biological macro- 
molecules, M will vary as N 2/3 to N, where N is 
the number of atoms. For 3-dimensional structures 
such as globular proteins, the accessible surface area 
(an hence M) will generally vary as N 2/3, whereas 
linear molecules such as DNA or two-dimensional 
structures such as lipid bilayers will vary as N. 
Clearly, the above procedure will become limiting 
for these systems. 

We have developed an alternate approach that has 
favorable computational and memory scaling proper- 
ties, and has been demonstrated to be accurate and 
efficient for semiempirical calculations of biological 
macromolecules. The strategy that we adopt is to 
minimize the quadratic function Eq. (5) directly us- 
ing conjugate gradient methods [15]. We are guaran- 
teed convergence after M iterations since the matrix 
A is symmetric, nonsingular, and positive definite. 
This is in contrast to the matrices involved in other 
boundary element methods that are neither symmet- 
ric nor nonsingular [6,7]. The idea is to perform a set 
of successive line minimizations in directions that 
are orthogonal. For a quadratic functional such as 
Eqs. (7), this can be accomplished by the following 
iterative procedure: 

At the first iteration k = 0, a starting guess for the 
solution vector q0 is provided (possibly the null 

vector), and the initial search direction 8q0 is cho- 
sen in the direction of the downhill gradient, 

~qo = - rqE(  qo) = ( 4  "4 - A . qo ) ,  ( 8 )  

where ~b 0 is the vector representing the potential 
B . Q  due to the solute charge Q at the surface 
charge positions. At the k th iteration, an improved 
solution vector qk+ 1 = qk + ak" 6qk is determined 
by the condition Ogel(qk -1- Ot k " ~qk) / i )Otk  = 0 t h a t  

leads to the expression for a k 

Q ) 
(9) Otk ~ - -  T 

6qk • A • 8qk 

The new direction is taken as the residual 6qk+l 
= ~ 5Q - A ' q k +  r The procedure is repeated itera- 
tively until a converged solution is reached. 

The rate of convergence of the procedure will be 
increased when the matrix A resembles the unit 
matrix. Consequently, a preconditioner matrix can be 
used to multiply both side of Eq. (6) to obtain a 
slightly modified set of Eq. (9): 

A - l -  ( A . q k -  
, (lO) 

ak = - 6q r '  A- A-1 . ~qk 

where A is the preconditioner that presumably satis- 
fies 

.~-1-h=l  
In order for the preconditioned conjugate gradient 

method to have a computational scaling advantage, 
the required matrix multiplications of the form A - x 
must be reduced from @(M 2) procedures. If these 
multiplications remain @(M2), no formal scaling 
advantage is achieved since M iterations are re- 
quired in principle to arrive at the exact minimum. In 
practice we observe that for the molecular systems 
considered here the number of iterations required for 
a given level of accuracy varies much less severely 
than de(M), and hence some advantage may still be 
achieved. Although the Coulomb interaction matrix 
A is not sparse, the matrix multiplication A . q  that 
represents the Coulombic potential of the surface 
charge vector, q, can be accomplished in de(M) or 
de(M *log(M)) effort using fast-multipole methods 
[16]. Similar strategies have been adopted for compu- 
tation of the electrostatic field in boundary element 
methods using grid-based multipole expansions [17] 
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and fast multipole methods [18]. Since the surfaces 
of biological macromolecules are highly irregular, 
standard fast-multipole methods that require building 
a hierarchy of cells is cumbersome. An ideal method 
for this purpose is the simple recursive bisection 
method proposed by P6rez-Jordfi and Yang [19]. This 
method is adaptive in the sense that sets of particles 
are recursively divided by splitting planes along the 
axis of minimal rotational inertial. The method has 
been demonstrated to be highly efficient, linear-scal- 
ing, and require essentially no overhead relative to 
direct methods even with very small particle distribu- 
tions. 

To accelerate convergence, the preconditioner ma- 
trix of Eq. (10) was chosen as the block diagonal 
Coulomb interaction matrix consisting of surface 
elements belonging to the same atom. The inverse of 
this matrix and storage requirements are linear. Addi- 
tional speed up can be achieved by taking advantage 
of a short-range neighbor list of surface charge ele- 
ments and using the preconditioned conjugate gradi- 
ent method recursively. The matrix multiplications 
are simple using a short-range cutoff in real space, 
and hence scale linearly. The disadvantage of this 
approach is that additional memory is required to 
store the lists of neighbor charges, although the 
requirement is still linear. 

3. Parameterization of atomic radii 

The solvent reaction field in the COSMO model 
will depend heavily on the solute cavity. A fre- 
quently employed convention is to define the cavity 
as the volume enclosed by the accessible surface 
defined by a set of effective atomic radii [20]. We 
employ the surface segmentation strategy described 
in the original COSMO formulation [1] and imple- 
mented in the MOPAC software package [21]. The 
surface is defined as the surface accessible to the 
center of a solvent probe with radii R s°lv around the 
van der Waals surface formed by the effective atomic 
radii, minus a distance 6 s¢ that relates to the dis- 
tance from the probe center where the dielectric 
screening effect begins. We take R ~°~v to be the 
radius of a water molecule (1.4 ,~), and choose 6 sc 
equal to R s°~v as is the default in MOPAC and the 
convention employed previously [1]. The cavity sur- 

face was constructed at a discretization level of 60 
surface elements per atomic sphere for all molecules. 
In all calculations the AMI Hamiltonian [22] was 
used with an external dielectric of 78.4. For calcula- 
tions of small molecules, the SCF convergence crite- 
rion was 10 -5 kcal /moi  for the energy. Minimiza- 
tion of Eq. (7) was carried out until the solvation 
energy was converged to 10 significant figures; a 
detailed analysis of accuracy and timings for the 
semiempirical divide-and-conquer method have been 
reported elsewhere [2]. 

To determine the atomic radii appropriate for 
describing solvation of biological macromolecules, 
we fit calculated solvation free energies to experi- 
mental and theoretical data for a series of molecules 
representing amino acid backbone and side chain 
components [20,23-25], nucleic acid bases [26], and 
phosphate groups [27]. For most of the neutral 
molecules, it is possible to measure partition coeffi- 
cients of the vapor to water transfer, from which 
solvation free energies can be derived. The process 
of solvation defined in this way includes a term that 
reflects the free energy necessary to form a cavity in 
the solvent. Frequently this term is assumed to be 
proportional to the accessible surface of the molecule 
[20], 

AGony = Y" SA + b ,  (11) 

where SA is the accessible surface area in ,~2, and y 
and b are regression parameters (other more sophis- 
ticated models for the cavitation term are possible, 
for example see Ref. [7]). We take y to be 5 
ca l /mo l .  ,~ and b to be 1 kcal /mol  as given by 
others [20]. Atomic radii were fit to the experimental 
and theoretical data shown in Table 1. For neutral 
molecules, one parameter per atom (H,C,N,O,S) was 
sufficient to obtain a reliable fit (Fig. 1). For ionic 
guanidinium, carboxylate, and phosphate groups, ad- 
ditional parameters were needed, as in other work 
[20,28]. The overall fit for neutral molecules is 0.8 
kcal/mol,  and for DNA bases is 0.9 kcal/mol.  The 
largest errors occur for ethanol (1.88 kcal /mol)  and 
N-methylacetamide (1.82 kcai/mol).  It is likely that 
for ethanol and methanol additional stabilization in 
solution arises from specific hydrogen bonding inter- 
actions with water. The solvation free energy of 
N-methylacetamide is a topic of some controversy, 
since the experimental solvation free energy be- 
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comes less favorable with the removal of a methyl 
group to form acetamide [23]. This result has re- 
cently been brought into question by theoretical free 
energy perturbation simulations that suggest removal 
of the methyl group makes solvation more favorable 
[29] (for additional discussion, see Refs. [7-10]). 

Because of the low volatility of nucleic acids, 
little experimental solvation free energy data is cur- 

rently available for these compounds. Consequently, 
we have fit results to theoretical data provided from 
free energy perturbation simulations [26]. The overall 
fit to the nucleic acid bases is very close to that for 
the neutral molecules, suggesting that the data and fit 
are most likely reasonable. It is noteworthy that in all 
cases the fitted solvation free energies are slightly 
greater than the data for nucleic acid bases, the 

T a b l e  1 

So lva t ion  f ree  e n e r g i e s  o f  a m i n o  and  nuc le ic  ac id  c o m p o n e n t s  

M o l e c u l e  R e s i d u e  AGca v AGe~ AGca]c AGex p e r r  

Neu t r a l  a m i n o  ac ids  

m e t h a n e  A l a  1.69 - 0 .13 1.56 1,93 0 .38 

p r o p a n e  Va l  2.03 - 0 .07  1.96 1,98 0.01 

i sobu tane  L e u  2.15 - 0 .09  2 .06  2 .28 0 .22  

bu tane  l ie  2 .19  - 0 . 0 8  2.11 2.15 0 . 0 4  

to luene  Phe  2.31 - 3 .47 - 1.16 - 0 .89  0 ,27  

4-creso l  T y r  2 .39  - 6 .87  - 4 .48 - 6 .13 1,65 

3 - m e t h y l i n d o l e  T r p  2 .56 - 8 .92  - 6 .36  - 5.91 0 .45 

m e t h a n o l  S e r  1.78 - 5.53 - 3 .75 - 5.11 1,37 

e thano l  T h r  1.96 - 5 .09  - 3.13 - 5.01 1.88 

m e t h a n e t h i o l  C y s  1.93 - 3 . 5 6  - 1.63 - 1.24 0 .39  

m e t h y l e t h y l  su l f ide  M e t  2 .22  - 3.08 - 0 .86  - 1.49 0 .63  

ace t ic  ac id  A s p  1.98 - 10.09 - 8.11 - 6 .70  1.42 

p rop ion ic  ac id  G l u  2.13 - 9 .28  - 7.15 - 6 .47 0 .68  

a c e t a m i d e  A s n  2.01 - 12 .54 - 10.53 - 9.71 0 .82  

p r o p i o n a m i d e  G l n  2 .16 - 11.33 - 9 .17 - 9.41 0 .24  

N - b u t y l a m i n e  L y s  2 .30  - 5 .19  - 2 .90  - 4 .29  1.39 

N - p r o p y l g u a n i d i n e  A r g  2.48 - 12.77 - 10.29 - 10.91 0 .62  

4 - m e t h y l i m i d a z o l e  H i s  2 .19 - 12.99 - 10.80 - 10.25 0 .55  

N - m e t h y l a c e t a m i d e  a bb  2.17 - 10 .44 - 8 . 2 6  - 10.08 1.82 

Io n i zed  a m i n o  ac ids  

ace ta te  ion  A s p  ( - ) 1.95 - 83 .19  - 81 .24  - 80 .65 0 .59  

p rop iona t e  ion Glu  ( - ) 2 .09 - 80 .58  - 78 .49  - 79 .12  0 .63 

N - b u t y l a m m o n i u m  L y s  ( + ) 2 .32 - 70 .18  - 67 .86  - 69 .24  1.38 

N - p - g u a n i d i n i u m  A r g  ( + ) 2 .30  - 68 .07  - 65 .77  - 66 .07  0 .30  

N u c l e i c  ac ids  b 

9 - m e t h y l a d e n i n e  A 2.56 - 18.06 - 15.50 - 13.6 1.9 

1 - m e t h y i t h y m i n e  T 2 .52 - 15.55 - 13.03 - 12.4 0 .6  

9 - m e t h y l g u a n i n e  G 2.65 - 26 .08  - 23 .43  - 22 .4  1.0 

l - m e t h y l c y t o s i n e  C 2 .42  - 21 .27  - 18 .84 - 18.4 0 .4  

l - m e t h y l u r a c i l  U 2 .39  - 16.86 - 14.47 - 14.0 0 .5  

H 2 PO4  ( - ) PO4  ( - ) 1.97 - 112.97 - 111 - 111 0 

F r e e  e n e r g i e s  are  in K c a l / m o l .  A t o m i c  radi i  u s e d  to d e t e r m i n e  the  a c c e s s ib l e  su r f a c e  and  E = 1 c a v i t y  we re :  H = 1.11, C = 1.42, N = 1.54, 

O = 1.46, S = 2,07 ,~; ace ta te  g r o u p  C O 2 :  C ~ 1.63, O = 1.52/~,; g u a n i d i n i u m  N H + :  H = 0 .78  /~; and  p h o s p h a t e  g r o u p  PO~-: O = 1.35, 

P = 1.67 ,~.. 

a Ca l cu l a t i ons  are  for  t r a n s - N - m e t h y l a c e t a m i d e .  

b So lva t ion  f ree  e n e r g i e s  fo r  m e t h y l a t e d  nuc le i c  a c i d  b a s e s  w e r e  ob t a ined  f r o m  f ree  e n e r g y  per tu rba t ion  s imu la t ions ,  e x c e p t  fo r  

9 - m e t h y l a d e n i n e  w h i c h  w a s  e s t i m a t e d  f r o m  so lubi l i ty  da ta  (Re f .  [26]).  
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Fig. 1. Regression of experimental and calculated solvation free 
energies (kcal /mol)  for neutral molecules listed in Table 1. 

largest difference being with the value for 9-methyl- 
adenine estimated from solubility data [26]. 

4. Calculations of  macromolecules  

The parameterized radii were applied to calcula- 
tions of several protein systems using the divide- 
and-conquer MOPAC (DAC/MOPAC) program de- 
scribed by Lee, York, and Yang [2], modified to use 
the preconditioned conjugate gradient/recursive bi- 
section method (PCGRB/COSMO) described here. 
The program has been further modified to read in 
density-matrix fragments from an amino- and nucleic 
acid fragment library in order to construct an approx- 
imate macromolecular density matrix that can be 
used as an initial guess to the SCF density matrix, or 
else to obtain an estimate of the solvation energy in 
the absence of electronic relaxation (see Appendix). 
Application of the methods described here to the 
study of aqueous polarization effects on biological 
macromolecules is the subject of further work [3]. 
Here, timings for several large protein systems rang- 
ing from over 438 to 4380 atoms both in gas-phase 
and in solution are presented (Fig. 2). The CPU 
overhead of the solvation calculations is about 30% 
relative to the corresponding gas-phase calculations. 
The CPU effort for a given number and type of 
particles depends on the molecular shape. The com- 
putational effort of the DAC/MOPAC method and 
the PCGRB/COSMO model are oppositely affected 
by shape. The efficiency of the DAC/MOPAC 
method is favored for linear systems that have small 

buffer regions, and slowest for compact 3-dimen- 
sional structures. The ef f ic iency of  the 
PCGRB/COSMO model, on the other hand, is fa- 
vored for compact structures that have the least 
surface area. The opposite shape dependence of the 
methods to some extent balance one another making 
the overall CPU time for the solvation calculations in 
Fig. 2 appear more uniformly linear than the corre- 
sponding gas-phase values. 

It is noteworthy to point out that the timing in 
Fig. 2 are in terms of the CPU per iteration. It is in 
general difficult to estimate the scaling behavior of 
the number of SCF iterations as a function of system 
size. The total number of iterations will depend on 
factors such as the conditioning of the Fock matrix, 
the density of states near the Fermi level, the molec- 
ular configuration and charge state of the system, 
and the minimization or mixing scheme that is em- 
ployed. We observe no systematic trend in the num- 
ber of SCF iterations with system size for the macro- 
molecules studied here. For example, bpti (892 
atoms), subtilisin BPN (3837 atoms), and superoxide 
dismutase (4380 atoms) required 12, 10, and 11 
iterations in solution, respectively (the typical range 
was 10 to 14). It is noteworthy that inclusion of 
solvation tends to stabilize the valence states and 

7. 
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5 ,*" 
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S ': '° 
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0 . . . .  • , • , • , 

0 1000 2000 3000 4000 5000 

NO. Atoms 

Fig. 2. CPU time per SCF iteration (103 s) for several protein 
molecules: amyloid 13-peptide (438 atoms), crambin (642 atoms), 
bpti (892 atoms), calbindin P43G (1195 atoms), ribonuclease A 
(1856 atoms), lysozyme (1960 atoms), interleukin 1-13 (2437 
a t o m s ) ,  C-MYB/DNA complex (2512 atoms), hiv-I protease 
dimer (3118 atoms), subtilisin BPN (3837 atoms), and superoxide 
dismutase (4380 atoms). Timings are given in the gas phase (solid 
line), and in solution (dashed line). All calculations were per- 
formed on a dedicated IBM RISK6000 workstation (128 MB 
memory). 
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results in faster convergence than a gas-phase SCF 
calculation starting from the same density matrix. 

5. Conclusion 

We have presented an efficient method for inclu- 
sion of solvent effects in linear-scaling electronic 
structure calculations of biological macromolecules. 
The method is demonstrated to have favorable scal- 
ing behavior, and requires approximately 30% CPU 
overhead relative to gas-phase calculations. The 
methods developed here and elsewhere [2,3] allow 
quantum mechanical calculations of systems over 
4000 atoms in solution to be treated on a typical 
workstation. A simple set of atomic radii parameters 
were also developed that reproduce to reasonable 
accuracy (less than 1 kcal/mol on average) solvation 
free energies of small molecules homologous to 
amino- and nucleic acid residues. We hope this work 
stimulates the application of quantum chemical 
methods to the study of biological macromolecules 
in solution. 

[30-33]. Here we adopt a simple procedure for 
constructing an approximate density matrix for bio- 
logical macromolecules based on a fragment library. 
The method is similar in spirit to conventional 
molecular mechanical approaches that employ empir- 
ical point charge representations for the gas-phase 
charge distribution of isolated residues or fragments, 
and assemble these fragments to obtain the macro- 
molecular charge density and potential. These empir- 
ical methods are routinely used to provide informa- 
tion about solvation energies, pK a shifts, and elec- 
trostatic potential surfaces of biological macro- 
molecules [34]. In the present method, we abandon 
the empirical point charge description and instead 
use directly the fragment density matrix elements. 
For the purposes of solvation energies, only the 
'atom-diagonal' density-matrix elements (elements 
on the same center) are used, since in the current 
implementation of MOPAC and our modified pro- 
gram, only these elements are coupled directly to the 
reaction field. Hence, the macromolecular fragment 
potential is represented by a set of atomic monopole, 
dipole, and quadrupole components. 
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Appendix A 

A.I. Fragment density matrices 

It is often useful to construct an approximate 
density matrix that represents a first order approxi- 
mation to the macromolecular charge distribution 

A.2. Construction of the fragment library 

For biological macromolecules, the basic set of 
building blocks consists of the amino acids and ribo- 
and deoxyribonucleotides. Calculations were per- 
formed on individual residues with end groups de- 
signed to mimic neighboring residues. In the case of 
the amino acids, ends were capped with CH3CO- 
and CHHNH- groups. Charged amino- and carboxy- 
terminal groups were derived from the alanine zwit- 
terion. For each of the nucleic acids (dA,dT,dC,dG, 
rA,rU,rC,rG), a three-unit single strand of stacked 
bases were used to derive density matrix elements 
for nucleotides at the 3' and 5' ends as well as the 
stacked (non terminal) nucleotides. The diagonal ele- 
ments of the density matrix for each residue were 
scaled to enforce residue normalization and reduce 
systematic errors. The atom and residue type names, 
coordinates, and density matrix elements for each 
molecule were stored in a fragment library. 

A.3. Construction of the fragment density 

For each atom i, the fragment library was searched 
until a atom/residue match was found, ifrag" The 



304 D.M. York et a l . /  Chemical Physics Letters 263 (1996) 297-304 

orthogonal transformation (rotation) that orients the 
fragment density matrix elements into the reference 
frame of the macromolecule was then determined. 
The rotation was defined by the requirement that a 
set of nearest neighbor reference atoms for ifrag 
were best fitted to the corresponding reference set 
for atom i in the macromolecular structure. Usually 
the set of first nearest neighbors is sufficient to 
define a unique best-fit rotational mapping. How- 
ever, in certain cases, such as a carbonyl oxygen that 
has only one covalently bonded neighbor, the rota- 
tion is not unique (as is the case for any linear 
system). In these instances, second nearest neighbors 
were included in the fitting set. For biological 
macromolecules, we did not observe a need to go 
beyond second nearest neighbors. Once a set of 
fitting neighbors was defined, the fragment library 
a tom ifrag and its associated reference atoms were 
translated so that atoms i and ifrag are superposed. 
The rotation matrix FI i was then determined that 
minimized the rms positional deviation of the macro- 
molecular and fragment library reference atoms us- 
ing the algorithm of Mclachlan [35]. 

For most semiempirical methods, the density ma- 
trix consists of elements formed from s- and p-type 
basis function products. We denote the transformed 
and untransformed density matrix elements consist- 
ing of x-type basis function products on centers i 

x,x, and ~x,x, and j as Pij Pij , respectively. The prescrip- 
tion for obtaining the transformed density matrix 
elements is given by 

SS ~ S S  

Pi./= Pii , (12a) 

psp =/5~p. R~, (12b) 

p~'  = R , -  ~y- R r. (12c) 

In this way, a macromolecular density-matrix charge 
distribution can be assembled from a fragment den- 
sity-matrix library. This representation generally 
overestimate the charge separation of interacting po- 
lar and ionic groups that if allowed to relax quantum 
mechanically, would usually tend to equalize. 
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